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The synthesis of open-framework oxide materials with ever-
increasing pore size and decreasing framework density remains a
bustling and challenging research field, as these materials are
attractive for separation and catalysis applications.1 Structures with
extra-large pores are often found in phosphates,2 phosphites,2 and
germanates.3-4 Germanates are especially interesting because
germanium can be four-, five- and six-coordinated with oxygen to
form well-defined cluster building units containing a number of
GeOn polyhedra. Open-framework germanates with extra-large
pores are built from such clusters3-4 and illustrate the concepts of
molecular building units and scale chemistry.5 Two germanates with
24-ring channels, ASU-163a and FDU-4,3b are built by Ge7X19 (Ge7)
and Ge9X26-m (Ge9) clusters (X ) O, OH, F, m ) 0-1),
respectively. A germanate, SU-M, with the largest pore formed by
a 30-ring, is built by an even larger cluster Ge10X28 (Ge10)4 and is
the first crystalline oxide with a pore opening beyond 20 Å.

In an attempt to modify the pore size and pore shape and improve
the thermal stability of our germanates, the possibility of silicon
substitution has been investigated. We have for the first time
introduced silicon into the Ge7 germanate clusters in SU-12,6 where
14% of the tetrahedrally coordinated Ge in ASU-163a was replaced
by Si. The resulting framework is isostructural to ASU-16 with
more circular pores and a higher thermal stability. In addition, a
number of original four-coordinated silicogermanates have been
synthesized7 showing that the incorporation of silicon into the
germanate cluster could lead to novel open frameworks, as the Si-O
distances (1.61 Å) are shorter than the Ge-O distances (1.76 Å)
and the Ge-O-Ge angles are typically smaller (130°) than Si-
O-Si angles.8

Here we present a novel silicogermanate SU-619 containing 26-
ring channels and built by (Ge,Si)10 clusters. SU-61 was prepared
hydrothermally from a mixture of germanium dioxide, 2-methyl-
pentamethylenediamine (MPMD), tetraethylorthosilicate (TEOS),
and water,10 following a synthesis procedure similar to that of SU-
M4. The structure was determined by single-crystal X-ray diffrac-
tion.11 SU-61 was characterized by X-ray powder diffraction
(XRPD), elemental analysis (EDS and CHN), thermogravmetric
(TG) analysis, and ion exchange experiments.

SU-61 crystallizes in the orthorhombic space groupCmcm,11 with
pseudohexagonal unit cell dimensions. The structure is built from
one unique (Ge,Si)10 cluster and two additional unique (Ge,Si)O4

tetrahedra. The (Ge,Si)10 clusters lie on a 63 net corresponding to
the carbon location in a graphite layer and form a layer containing
26-rings in theab-plane (Figure 1a). Each 26-ring is formed by
six (Ge,Si)10 clusters connected to one another through one or two

additional (Ge,Si)O4 tetrahedra and has a mirror symmetry. The
layers are stacked along thec-axis, with adjacent layers related by
ac-glide perpendicular to theb-axis and connected via the bridging
oxygen to form a three-dimensional (3D) framework (Figure 1b).
The framework contains two-dimensional intersecting 8- and 26-
ring channels along theb- andc-axis, respectively.

The framework density (FD) of SU-61 is 10.2 (Ge,Si) atoms
per 1000 Å3. The free diameter of the 26-ring is 13.1× 17.3 Å in
SU-61, much larger than that found in the 24-ring germanate ASU-
16 (8.4× 14.5 Å) and silicogermante SU-12 (11.3× 12.5 Å), both
built from (Ge,Si)7 clusters. The free diameter of the 24-ring in
the germanate FDU-4, built from Ge9 clusters, is even smaller (7.4
× 8.2 Å). The pore opening in SU-61 has an area comparable to
that of the 30-ring in SU-M (16.7× 22.5 Å) but is more circular.
It is notable that both SU-61 and SU-M are built from the same
cluster. The synthesis conditions for both compounds are also
similar, the difference being the addition of TEOS to incorporate
Si in SU-61. SU-61 and SU-M can be regarded as the analogues
of the mesoporous hexagonal MCM-41 and cubic MCM-48,
respectively.12 While MCM-41 and MCM-48 were synthesized by
using surfactant liquid crystal templating agents, SU-61 and SU-M
were prepared by condensation of the (Ge,Si)10 clusters using a
small organic amine as a template. In contrast to the amorphous
walls of MCM-41 and MCM-48, SU-61 and SU-M have well-
defined crystalline framework walls.

We have for the first time incorporated Si into the Ge10 clusters.
The Si contents at the tetrahedral sites range from 10(1) to 30(1)%
(on average 21%) and are for the two additional tetrahedra 28(1)
and 78(1)%, respectively. The average T-O distance varies
significantly for the tetrahedral sites, ranging from 1.607(6) to
1.742(5) Å. The large variation of the Si content in different
tetrahedral sites is not yet understood. The overall Ge/Si ratio in
SU-61 is 3.2 and agrees with that obtained by EDS (3.1).
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Figure 1. Polyhedral representation of SU-61 (a) the 26-ring layer; (b)
the 3D framework showing the 26-ring channels. Octahedra and tetrahedra
within the Ge10 clusters are shown in red and green, respectively. The
additional tetrahedra are in yellow.
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SU-61 contains one (Ge,Si)10O27OH cluster, one (Ge,Si)O4
tetrahedron, two (Ge,Si)O3OH tetrahedra, and two protonated
MPMD templates per formula unit.9 The templates could be partially
exchanged by Na+, K+, and Cs+ ions. In situ X-ray powder
diffraction showed that SU-61 is thermally stable up to 250°C
and has a stability similar to that of ICMM-73c (250°C) and lower
than that of SU-M4 (320 °C).

Interestingly, Ge10 clusters can form 3D frameworks with a great
structure diversity, from a dense Na4Ge9O20

13(6-ring, FD) 21.6),
to the relatively open Ge-pharmacosiderite14 (8-ring, FD ) 13.8)
and ICMM-73c (14-ring, FD) 13.0), and to the very open SU-61
(26-ring, FD ) 10.2) and SU-M4 (30-ring, FD ) 7.1). All the
structures contain only one unique Ge10 cluster. The four octahedra
in each Ge10 cluster share edges and form a rather rigid unit. The
six tetrahedra, on the other hand, are only two-connected to the
clusters, so that they can rotate freely (Figure 2). The symmetry of
the Ge10 cluster is the highest in the Ge-pharmacosiderite (-43m)
and lowered in other structures due to the rotation of the tetrahedra.
The Ge10 clusters in Na4Ge9O20

13, SU-M,4 and ICMM-73c have lost
all symmetry; in SU-61 only one mirror plane is preserved. For
SU-M, ICMM-7, and SU-61, three of the tetrahedra in each Ge10

cluster are connected by an additional tetrahedron and can no longer
rotate freely. In ICMM-7 and SU-61, additional tetrahedra are
connected to the clusters. In all these structures, the clusters are
connected to one another in different ways: by sharing a common
tetrahedron, or by sharing a bridging oxygen atom of their
tetrahedra, or even via one or two additional tetrahedra.

To understand the connections of the Ge10 clusters in the different
structures, we evaluate the topology of these frameworks by
studying the connectivity of the Ge10 clusters (Figure 2). In Ge-
pharmacosiderite, each Ge10 cluster is linked to six neighboring
clusters by sharing their tetrahedra. The clusters lie on a six-
coordinated primitive cubicpcu net to form the Ge-pharmacosi-
derite, containing 3D intersecting 8-ring channels. In Na4Ge9O20,
each Ge10 cluster is also linked to six neighboring clusters, but by
sharing two common tetrahedra and linking the other four. The
resulting framework is rather dense, containing only 6-rings, and
corresponds to the six-coordinatedâ-Snbsn net. The Ge10 clusters
in both SU-M4 and ICCM-73c are five-coordinated. In SU-M, they
fall onto the G (gyroid) minimal surface and are located at the nodes
of the fcz net to form a framework with two gyroidal 30-ring
channels. In ICCM-7, the Ge10 clusters lie on the boron nitridebnn
net. On the other hand, the underlyingosfnet of SU-61 with seven-
coordinated clusters had not been observed before in any crystalline
structures.

We have presented a new open-framework silicogermanate SU-
61 containing intersecting 8- and 26-ring channels. It has been
possible to incorporate 21% Si into the tetrahedra in the Ge10 cluster.

Numerous possible geometries arise from the observed flexibility
of the tetrahedra in the Ge10 cluster, suggesting that more exotic
structures may be formed by the Ge10 clusters.
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Figure 2. Above: the Ge10 cluster and its connection to the additional
tetrahedra (in yellow). Each Ge10 cluster is built from four octahedra (in
red) and six tetrahedra (in green). Below: the underlying net of different
structures identified by Systre.15
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